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The paper presents an approach to transcribe a multigravity assist trajectory design
problem into an integrated planning and scheduling problem. A modified Ant Colony Opti-
mization algorithm is then used to generate optimal plans corresponding to optimal sequences
of gravity assists and deep space maneuvers to reach a given destination. The modified Ant
Colony Algorithm is based on a hybridization between standard ant colony optimization
paradigms and a tabu-based heuristic. The scheduling algorithm is integrated into the tra-
jectory model to provide a fast time-allocation of the events along the trajectory.The approach
demonstrated to be very effective on a number of real trajectory design problems.

Nomenclature
A, B, C polynomial coefficients
a semimajor axis
b direction of deflection (binary)
E eccentric anomaly
e eccentricity
fobj objective value, km/s
fp/a binary variable for pericenter or apocenter
G matrix of combinations of types of transfer
i generic index for the leg
j generic index
K set of Keplerian orbital elements
k periodicity coefficient
L list
M point in deep space
mDSM magnitude of DSM, m/s
nP number of planets
neval number of function evaluations

Received 7 December 2009; accepted for publication 17 June 2010. Copyright © 2010 by the Matteo Ceriotti and Massimiliano
Vasile. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be
made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1542-9423/10 $10.00 in correspondence with the CCC.∗ Research Fellow, Advanced Space Concepts Laboratory, Department of Mechanical Engineering, James Weir Building, AIAA
Member.
† Senior Lecturer, Space Advanced Research Team, Department of Aerospace Engineering, James Watt Buildling South, AIAA
Member.

261



CERIOTTI AND VASILE

ngen number of generations
niter number of iterations
npop size of population
nrev1 number of full revolutions in the first arc
nrev2 number of full revolutions in the second arc
P planet
Pr probability
p semilatus rectum
Q ordered set
q generic element in the set
S list of solutions
RP mean radius of the planet
r position vector
rp radius of pericenter (absolute)
rps signed radius of pericenter
s solution vector
T time of flight, d
t time
U random function
v velocity vector, km/s
wplanet weight for planet selection
wtype weight for type of transfer selection
x, y cartesian coordinates, km
α fraction of time of flight at which the DSM occurs
�v change in velocity due to DSM, m/s
�θ anomaly increment, rad
δ deflection angle
ε admissibility threshold, km/s
θ true anomaly
λ variable for radius of pericenter or launch velocity
μ planetary constant
σ time of flight weight, km/s/d
τ pheromone distribution vector
φ difference in anomalies
ϕ0 launch angle
� right ascension of ascending node
ω anomaly of pericenter

Superscripts
− incoming
+ outgoing
∗ optimal
(1), (2) first and second solution

Subscripts
0 at launch
d at discontinuity
dep absolute at departure
DSM referred to DSM
int intersection
l index for feasible solution
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o on orbit of planet
P referred to the planet
s on second arc
temp temporary
tn in tangential and normal components
xy in cartesian components
∞ relative at infinity

I. Introduction

IN the literature on multigravity assist (MGA) trajectories, their automatic design (i.e., the definition of an optimal
sequence of planetary encounters and the definition of one or more locally optimal trajectories for each sequence)

has been approached with several different techniques. All of them can be classified in two main categories: two-level
approaches and integrated approaches.

Two-level approaches split the problem into two subproblems which lay at two different levels: one subproblem
is to find the optimal sequence of planetary encounters, the other is to find an optimal trajectory for that sequence.
Two-level approaches define the planetary sequence independently of the trajectory itself. Once the sequence (or a
set of promising sequences) has been selected, then one or more optimal trajectories can identified for each sequence
in the set [1]. Two-level approaches use a simplified, low fidelity, model for representing the trajectory [2] at the first
level. The use of a low-fidelity model allows for a quick assessment of many sequences, if not all. At the second
level, a higher-fidelity, more computationally expensive model is used instead [3]. Each sequence is represented
by a string of integer numbers, whereas the associated trajectory is represented with a string of real and integer
numbers defining the time and the characteristics of the events occurring along the trajectory [e.g., launch, deep
space maneuver (DSM), arrival at a celestial body, number of revolutions around the Sun, etc.]. Therefore, for each
sequence, there is an infinite variety of possible trajectories.

The issue with two-level approaches is the difficult assessment of the optimality of a given planetary sequence,
without an exhaustive search for all possible trajectories associated with that sequence. Unfortunately, finding an
optimal trajectory is a very difficult global optimization problem in itself. This, combined with the fact that usually
there exists a very high number of sequences for a given transfer problem, requires a considerable computational
effort. The computational cost can be reduced by discarding nonpromising sequences. However, if the low-fidelity
model is not accurate enough, either some good sequences are discarded, or many of the retained ones can result to
be actually bad.

As opposed to the two-level approaches, integrated approaches define a mixed integer-continuous optimization
problem, which tackles both the search of the sequence and the optimization of the trajectory, using a single model,
at the same time [4]. This kind of problem is known in literature as a hybrid optimization problem [5,6]. The main
difficulty with integrated approaches is that a variation of even a single celestial body in the sequence corresponds to a
substantially different set of trajectories. Therefore, if the solution of the hybrid optimization problem is represented
with a single vector, a small variation of some of its components can lead to a huge variation of the cost function. In
addition, a variation of the length of the sequence implies varying the number of legs of the trajectory, and thus the
total length of the solution vector.

The automatic design of a trajectory with discrete events was recently formulated by Ross and D’Souza [5] as a
Hybrid Optimal Control Problem, and a solution was proposed by Wall and Conway [7] with a two-level approach
based on Genetic Algorithms. The approach proposed by Wall and Conway does not employ models with different
fidelity, removing one of the issue related to other two-level approaches.

In this paper, it is proposed to formulate the automated design of an MGA trajectory as an autonomous planning
and scheduling problem. The resulting scheduled plan will provide the planetary sequence for an MGA trajectory
and a good estimation of the optimality of the associated trajectories.

Although the proposed method can fall in the category of the integrated approaches, the scheduling and the
planning of the events are separated at two different levels. At lower level, a scheduler, integrated within the MGA
trajectory model, schedules all the events and provides an estimation of the feasibility and quality of the trajectories.
At upper level, an algorithm, partially inspired by the Ant Colony Optimization (ACO) paradigm [8], generates
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plans to be submitted to the scheduler. The scheduler is integrated into the trajectory model. The model implements
a simplified planar representation of an MGA trajectory in which DSMs are applied only at the apsides of conic
arcs and the variation of the velocity is parallel to the local tangent. The experimental results in this paper will
demonstrate that these simplifying assumption are reasonable and provide acceptable results. Note that the ACO
planner, developed in this paper, is independent of the model and accessible as a black box, or oracle providing the
feasibility of the transfer and its cost.

ACO was originally created to solve the Traveling Salesman Problem (TSP) [9], and later successfully applied
to a number of other discrete optimization problems. In the literature, some ACO-derived meta-heuristics exist for
the specific solution of different scheduling problems. In particular, Merkle et al. [10] proposed to apply ACO to
the solution of the Resource-Constrained Project Scheduling Problem, while Blum [11] suggested the hybridization
of ACO with a probabilistic version of Beam Search for the solution of the Open Shop Scheduling problem. Here,
the original idea behind ACO is elaborated to solve planning problems in which the optimality of a particular action
(e.g., a transfer from a celestial body to another, in the case of MGA trajectories) is strongly dependent on the history
of all preceding actions.

The paper is structured as follows: at first the trajectory model with the integrated scheduler will be presented,
then the ACO-based algorithm is illustrated with a description of how plans are constructed; a discussion will follow
comparing the proposed planning algorithm against standard ACO. Finally, two case studies will demonstrate the
effectiveness of the proposed approach.

II. Trajectory Model
Conceptually, an MGA trajectory can be seen as a scheduled sequence of events (e.g., launch, DSM, swing-by,

planetary capture, etc.) characterized by a set of integer variables, identifying the type of event, and a set of real
variables identifying the time and characteristics of the event.

The proposed trajectory model is an integral part of the solution process and is used to schedule the events.
The model is based on a two-dimensional linked conic approximation: the trajectory is composed of a sequence of
planar conic arcs linked together through discrete, instantaneous events. In particular, the sequence is continuous
in position and piecewise continuous in velocity, i.e., each event introduces a discontinuity in the velocity of the
spacecraft but not in its position. Note that, although the assumption that the trajectories are planar may seem very
reductive, in the solar system, the inclinations of planetary orbits are very small (below 3◦), with the exception
of Mercury and Pluto. Pluto cannot be used for a swing-by, being the farthest of the bodies in the solar system.
Mercury is definitely an appealing target, however, as demonstrated by the NASA Messenger mission [12] and the
European Space Agency (ESA) BepiColombo mission [13]. A test case will show that the assumption of planarity
is acceptable, and yields good solutions even for a transfer to Mercury. On the other hand, the model cannot be
used for missions which have, by necessity, to go out of the ecliptic plane [14], such as the ESA–NASA mission
Ulysses [15].

In summary, the proposed trajectory model is composed of: a launch from the departure celestial body; a series of
deep space flight legs connected by gravity assist maneuvers (modeled through a linked-conic approximation); and
a capture into an orbit at a target celestial body. Each one of these events will be explained in the following together
with the way they are scheduled along the trajectory.

A. Launch
The launch event is modeled as an instantaneous change of the velocity of the spacecraft with respect to the

departure planet. The velocity change is given in terms of the modulus v0 (which depends on the capabilities of
the launcher) and the in-plane direction, specified through the angle ϕ0, measured counterclockwise with respect to
the planet’s orbital velocity vector vP at the time of launch t0 (see Fig. 1a).

According to Fig. 1a, the initial relative velocity of the spacecraft, defined with respect to a reference frame
centered in the planet and having the axes tangential and normal to its orbit (t̂, n̂), is

v0,tn = v0 [cos ϕ0, sin ϕ0]T (1)
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Fig. 1 a) Geometry of the launch event. b) Geometry of the swing-by event.

The vector is then projected onto the heliocentric Cartesian reference frame, to give v0,xy , and added to the velocity
vP of the planet to give

vdep = v0,xy + vP (2)

The departure time t0 and the direction ϕ0 are free parameters of the model, while the launch velocity modulus v0

will be used to target the next planetary encounter and solve the phasing problem (see Sec. II.D).

B. Swing-by Model
Gravity assist maneuvers, or swing-by’s, are modeled as instantaneous changes of the velocity vector of the

spacecraft due solely to the gravity field of the planet. Given the velocity vector v− prior to the swing-by (see
Fig. 1b), the relative incoming velocity at infinity is defined as

v−
∞ = v− − vP (3)

The physical properties of unperturbed hyperbolic orbital motion [16] prescribe that

v+
∞ = v−

∞ = v∞ (4)

which means that the modulus of the outgoing velocity v+∞ at infinity is known. Its direction can be computed
considering the anomaly of the incoming asymptote

θ∞ = arccos

( −μP /rp

v2∞ + μP /rp

)
(5)

In this formula, μP is the gravity constant of the planet, and rp is the radius of the pericenter of the hyperbola. The
value of rp can be used to control the deflection of the incoming velocity and is limited to above the radius of the
planet, RP , to avoid a collision, or to above the atmosphere to preserve incoming v∞.

The deflection angle of the asymptotic relative velocity vector, due to the planet gravity field, is

δ = b(2θ∞ − π) (6)

where b = ±1 is a binary variable defining the direction of the deflection, i.e., clockwise or counter-clockwise. In
fact, in the linked conic approximation the actual planetocentric trajectory is not defined, thus both (2θ∞ − π) and
(π − 2θ∞) are acceptable deflection angles. In order to avoid introducing an additional parameter, in the practical
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implementation on this model, we will make use of a signed radius of pericenter rps that can assume negative values,
such that rp = |rps | and b = sgn(rps).

The outgoing relative velocity is found by rotating the incoming velocity by δ:

v+
∞ =

[
cos δ sin δ

− sin δ cos δ

]
v−

∞ (7)

and finally, the absolute velocity is:

v+ = v+
∞ + vP (8)

As for the launch velocity magnitude, the radius of pericenter rps is tuned to meet the terminal conditions of the
transfer leg following the swing-by.

C. Deep Space Flight
Each deep space flight leg is made of two conic arcs linked, at a point Mi , through a single discrete event. The

leg starts at a departure planet Pi and ends at an arrival planet Pi+1. The event is an instantaneous change in the
heliocentric velocity vector of the spacecraft, or DSM, due to an ignition of the engines. In this model, we assume
that the DSM is performed either at the apocenter or pericenter of the conic arc preceding the maneuver. In addition,
the change in velocity is tangential to that arc. As a consequence, the DSM will raise or decrease either the pericenter
or the apocenter of the orbit, without changing the line of apsides.

1. First Arc
Let us assume that the spacecraft is at a given planet Pi at time ti . Its position ri coincides with that of the planet

rPi
, which is known from the ephemeris. The heliocentric velocity of the spacecraft vi , instead, depends on either

v0, when the first arc starts from planet P0, or rps . The initial state [ri , vi] can be converted into the six Keplerian
elements Ki = [ai, ei, 0, 0, ωi, θi]T, where ai is the semimajor axis, ei is the eccentricity, the inclination and the
right ascension of the ascending node are zero, ωi is the argument of the periapsis, and θi is the true anomaly.

If the transfer leg contains a DSM (see Fig. 2a), the position of point Mi is arbitrarily set to be either the pericenter
or the apocenter, according to the binary variable fp/a,i . Therefore, the true anomaly θDSMi

of the ith DSM is given
by

fp/a,i =
{

0 ⇒ θDSMi
= 0

1 ⇒ θDSMi
= π

(9)

The Keplerian parameters at point Mi , before performing the maneuver, are

K−
DSMi

= [
ai, ei, 0, ωi, 0, θDSMi

]T
(10)

The position vector rDSMi
of the DSM and the velocity vector before performing the maneuver v−

DSMi
are computed

from K−
DSMi

. The time of the DSM is found by first computing the eccentric anomaly corresponding to the departure
point θi :

Ei = 2 arctan

√
1 − ei

1 + ei

tan
θi

2
(11)

Then, by using Kepler’s time law,

tDSMi
=

√
a3

i

μ
(2πnrev,1 + EDSMi

− Ei + ei sin Ei) + ti (12)

where EDSMi
= θDSMi

+ 2kπ , since the maneuver is either at pericenter or apocenter, and the integer k must be
chosen such that EDSMi

follows Ei . The integer quantity nrev1,i � 0 is the number of full revolutions before the DSM.
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Fig. 2 a) First arc, from planet Pi up to point Mi; the parameter nrev1,i defines the number of full revolutions (dashed
trajectory). b) Second arc from Mi to the selected orbital intersection with the planet; nrev2,i full revolutions are
performed (dashed trajectory) before the orbital intersection.

The velocity right after performing the DSM is given by

v+
DSMi

= v−
DSMi

+ v−
DSMi

v−
DSMi

mDSMi
(13)

The parameter mDSMi
is the magnitude and direction of the DSM: if mDSMi

is positive, the thrust is along the velocity
vector of the spacecraft, otherwise it is against the velocity of the spacecraft. The velocity vector v+

DSMi
is used to

compute the postmaneuver orbital elements K+
DSMi

. The time, states and orbital elements right after the DSM define
also the time, states and orbital elements at point Mi :

tMi
= tDSMi

rMi
= r+

DSMi

vMi
= v+

DSMi

KMi
= K+

DSMi

(14)

If the leg does not contain any DSM, the first arc is propagated up to a fictitious point Mi defined in terms of
anomaly increment �θ . The states of the spacecraft at point Mi , rMi

, vMi
are computed from the Keplerian parameters:

KMi
= Ki + [0, 0, 0, 0, 0, �θ ] (15)

The reason for using this forced propagation is twofold: first, to prevent that, if no full revolutions are considered,
the first intersection occurs after a null time; second, to prevent any event (e.g., a DSM or another swing-by)
from happening immediately after the swing-by or at the same time, which would be infeasible due to operational
constraints. The quantity �θ has to be larger than the machine numerical precision but small enough to allow for the
modeling of short transfer legs. It is important to underline that �θ is not a design parameter, its value is arbitrary
and does not affect the planning process. The only impact is on the time of the first intersection and therefore on the
acceptable minimum length of the transfer arc. The acceptable minimum length can be easily decided a priori. For
this work, a value �θ = 0.3 rad (about 17◦) was chosen.

The time at Mi is found by solving Kepler’s time law

tMi
=

√
a3

i

μ
(EMi

− Ei − ei(sin EMi
− sin Ei)) + ti (16)
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where EMi
is

EMi
= 2 arctan

√
1 − ei

1 + ei

tan
θMi

2
+ 2kπ (17)

with θMi
= θi + �θ and k such that EMi

follows Ei . Note that, as the DSM can only be at the pericenter or apocenter,
transfer legs containing a DSM cannot be shorter than the time required to reach either the pericenter or the aproceter.

2. Second Arc
The second arc starts at point Mi with states [rMi

, vMi
] and is propagated until the intersection with the orbit of

planet Pi+1 (see Fig. 2b).
The intersections between the second arc and the orbit of the planet can be found by solving the following system

of equations:

rs = ro

θs + (ωMi
+ �Mi

) = θo + (ωPi+1 + �Pi+1)
(18)

The radius rs along the second arc and the radius ro along the orbit of planet Pi+1 are given by:

rs = pMi

1 + eMi
cos θs

(19)

ro = pPi+1

1 + ePi+1 cos θo

(20)

where pMi
= aMi

(1 − e2
Mi

) and pPi+1 = aPi+1(1 − e2
Pi+1

) are, respectively, the semilatus rectum of the orbit of the
spacecraft, and planet. By defining φ = (ωMi

+ �Mi
) − (ωPi+1 + �Pi+1) and combining Eq. (18) with Eq. (19), after

some algebra, we can get

(pMi
ePi+1 cos φ − pPi+1eMi

) cos θs − (pMi
eMi

sin φ) sin θs + pMi
− pPi+1 = 0 (21)

that is a linear equation in sin θs and cos θs . Now, using the transformation t = tan(θs/2), Eq. (21) becomes

(C − B)t2 + 2At + (B + C) = 0 (22)

where A = (pMi
ePi+1 cos φ − pPi+1eMi

), B = (pMi
eMi

sin φ), and C = pMi
− pPi+1 . Equation (22) has solutions

θs = 2 arctan

(
−A ± √

A2 + B2 − C2

C − B

)
+ 2kπ, k ∈ Z. (23)

If A2 + B2 − C2 < 0, then there are no real solutions to Eq. (22), which means that the spacecraft’s orbit does not
intersect Pi+1’s orbit. Therefore, either the initial conditions of the leg, or the parameters mDSMi

and fp/a,i , have to be
modified. If instead � = A2 + B2 − C2 � 0, then Eq. (23) yields two solutions θ(1)

s and θ(2)
s with periodicity n. Since

only the first two intersections are of interest, we can neglect the periodicity by setting n = 0. The true anomalies of
the two intersections along the orbit of the planet can be derived from the second equation of system (18)

θ(1)(2)
o = θ(1)(2)

s + φ (24)

One of the two intersections is then selected according to the value of the binary variable f1/2,i , such that

f1/2,i =
{

0 → θint = θ(1)
s , θ̄ = θ(1)

o

1 → θint = θ(2)
s , θ̄ = θ(2)

o

(25)
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where θint, θ̄ are the true anomalies of the selected intersection, respectively, along the orbit of the spacecraft, and of
the planet. From θint, the time of intersection tint can be computed with Kepler’s time law:

tint =
√

a3
Mi

μ
(2πnrev2,i + Eint − eMi

sin Eint − EMi
+ eMi

sin EMi
) + tMi

(26)

where Eint is computed from θint using Eq. (11). The integer variable nrev2,i � 0 defines the number of full revolutions
along the second arc. Finally, the Keplerian parameters at the intersection point are:

Kint = [
aMi

, eMi
, 0, ωMi

, 0, θint
]

(27)

from which the state vector of the spacecraft [rint, vint] can be computed.

D. Solution of the Phasing Problem
In order to perform a gravity assist maneuver or a planetary capture, the terminal position of the spacecraft has

to match that of the planet. However, at intersection time tint, planet Pi+1 is at true anomaly θPi+1 , which is generally
different from θ̄ . From Eqs. (10), (14), and (26), the time of intersection is a function of the orbital parameters of the
first and second arc and therefore of the states at the beginning of the first and second arc. If the DSM is provided
by the planner, the time of intersection is a function solely of v0 or rps , depending on the starting event. Therefore,
if one introduces the parameter λ, defined as

λ ≡
{

rps, if i > 0

v0, if i = 0
(28)

the true anomalies of the intersection point and of the planet can be expressed as θ̄ (λ) and θPi+1(λ). Matching the
position of the planet with that of the intersection point at time tint (also known as the phasing problem), then,
translates into finding a value λ = λ∗ that satisfies the equation (see Fig. 3)

�θ(λ∗) = θPi+1(λ
∗) − θ̄ (λ∗) = 0 (29)

Figures 4 and 5 represent the function �θ(λ) for different transfer cases. Figure 4 shows the nonresonant transfers:
Fig. 4a is fromVenus to Mercury, following a swing-by ofVenus. In this case, the parameter λ is the radius of pericenter
of the swing-by rps . Figure 4b is from Earth to Venus after launching from Earth, so λ ≡ v0.

Figure 5, instead, refers to resonant transfers: Fig. 5a is a Venus-to-Venus transfer starting with a swing-by; Fig. 5b
is an Earth-to-Earth transfer, starting with launch. It is worth noting that for some values of λ, �θ(λ) is not defined:
this is the case when there is no possible orbit intersection. Examples are in Fig. 4a, for rp/RP > 2.1, and Fig. 4b, for
v0 < 2.6 km/s. This is in fact the minimum excess velocity to reach the orbit of Venus from Earth (with ϕ0 = π , as
in this case). Furthermore, when a leg follows a swing-by, rp is limited by the radius of the planet, which introduces

Fig. 3 Geometry of the phasing problem.
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Fig. 4 a) Venus to Mercury leg following a swing-by of Venus (mDSM = 0 m/s, four full revolutions). b) Earth to
Venus leg following launch from Earth (mDSM = 600 m/s, no full revolutions).

v0 , (m/s)

Fig. 5 a) Venus-to-Venus leg following a swing-by of Venus (mDSM = 0, three full revolutions). b) Earth-to-Earth
leg following launch from Earth (mDSM = 0, no full revolutions).

the constraint (
rp

RP

< −1

)
∨

(
rp

RP

> 1

)
(30)

Constraint (30) is the reason for the gap in Fig. 5a. The cases depicted in Figs. 4a and 4b, show that the function
�θ(λ), is continuous, smooth, and monotonic over the range of interest of λ. Hence, the phasing problem has only
one solution. This solution can be found with a simple Newton–Raphson method in one dimension. However, when
a resonant transfer is considered, as in Figs. 5a and 5b, �θ(λ) is discontinuous and multiple zeros exist. Each zero
corresponds to a different resonance with the planet (and of course a different transfer time). The discontinuity is due
to the cyclic nature of �θ . In fact, say λd is the value of λ at which �θ is discontinuous, then limλ→λ−

d
�θ = −π ,

and limλ→λ+
d
�θ = +π , i.e., the planet and the spacecraft are on the opposite sides of the planet’s orbit.

Note that, since there is no easy way, at a given transfer, to prefer one value of λ∗ over another, all the solutions
need to be retained for the evaluation of the following transfers.

In the present implementation, the search for the zeros of the function �θ is performed with the Brent method
[17]. This method resulted to be fast and robust, since it uses a Newton-based iteration for quick local convergence,
but switches to a bisection-like method to overcome discontinuities and capture multiple solutions. A set of starting
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points, defining multiple intervals for the bisection method, need to be provided to initialize the Brent method and
are specified case by case.

E. Complete Trajectory
A complete trajectory is made of a sequence of transfers connecting nP celestial bodies [P0, P1, . . . , PnP

]. Thus,
a complete trajectory with nP + 1 planets has nP transfers, and nP − 1 swing-by’s.

The solution of Eq. (29), together with Eqs. (12), (16), and (26) provides a complete scheduling of the trajectory
given the initial time t0 and the five parameters mDSMi

, nrev1,i , nrev2,i , fp/a,i , and f1/2,i for every i = 0, . . . , nP − 1.
Since these five parameters fully characterize all possible legs from a planet Pi to a planet Pi+1, they are said to

define a type of transfer. Conversely, because of the multiplicity of the zeros of Eq. (29), each transfer corresponds
to a set of legs.

Hence, assigning a value to t0, ϕ0, Pi , mDSMi
, nrev1,i , nrev2,i , fp/a,i , and f1/2,i for i = 0, . . . , nP − 1 creates a tree

structure in which every branch is a trajectory.Algorithm 1 illustrates the procedure to keep track of all the trajectories
in the tree. The algorithm yields a list L containing all the possible conditions of arrival at the last reachable planet.
In fact, if no leg in the set associated to transfer i satisfies the phasing problem, then planet i + 1 cannot be reached
and the algorithm terminates. Furthermore, an upper bound on the time of flight of the entire trajectory, or of some
legs, is introduced. Trajectories that exceed the total or partial time of flight constraint are discarded from the list. The
information of infeasibility at a given transfer will be used to fill in a tabu list of broken or impracticable solutions.

Algorithm 1 L list generation
1: For i = 0 find all possible v∗

0 |�θ(v∗
0) = 0

2: for all v∗
0 do

3: find the final conditions of the first leg
4: add the final conditions to the list L
5: for all i = 1, . . . , nP do
6: Ltemp ← Ø
7: for all elements in L do
8: Find all possible r∗

ps |�θ(r∗
ps) = 0

9: for all r∗
ps do

10: Find the final conditions at planet Pi+1

11: Add final conditions to the list Ltemp

12: end for
13: end for
14: if Ltemp =Ø then
15: Exit
16: end if
17: end for
18: L ← Ltemp

19: end for

The entire tree is a complete transfer from P0 to PnP
and represents a solution of the MGA trajectory planning

problem. Thus, a plan is fully defined by assigning a value to the parameters in Table 1 for all i = 0, . . . , nP − 1. A
partial or incomplete plan is the set of parameters sufficient to describe a solution up to transfer i. Furthermore, if
Algorithm 1 exits at planet Pi , the plan is broken and the solution is said to be infeasible at transfer i.

For each solution of the MGA planning problem, the trajectory model computes:
1) The sum of all the DSMs, or total �v and the launch excess velocity, v0, which is the result of the phasing

problem for the first leg,
2) The relative velocity at the last planet, v∞. This value is usually important for assessing the optimality of a

trajectory, as a low v∞ implies that a small maneuver is needed for the spacecraft to be captured by the target
planet,
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Table 1 Summary of the free design parameters defining a solution to the
MGA trajectory planning problem

Description Variables

Planetary sequence [P0, P1, . . . , PnP
]

Departure time t0
Departure angle ϕ0
Transfer types for i = 0, . . . , nP − 1 [mDSMi

, nrev1,i , nrev2,i , fp/a,i , f1/2,i]

3) The total time of flight of the trajectory. The total time of flight is important when assessing the trajectory,
as long missions may not be feasible due to excessive cost of the operations.

The whole trajectory model was implemented in ANSI C and compiled as a MEX-file for interfacing with MATLAB.

III. ACO–MGA Algorithm
The model described in the previous section yields a set of scheduled trajectories provided that a complete or

partial plan is available. In this section, we present a planning algorithm based on the ant colony paradigm.
At first, the continuous space of the real parameters t0, ϕ0, and mDSMi

is reduced to a finite set of states. Then the
optimization algorithm, called ACO–MGA in the following, operates a search in the finite space of possible values
for the design parameters in Table 1. A complete description of the algorithm ACO–MGA follows.

A. Solution Coding
In ACO–MGA, a plan solution is fully defined by assigning values to all the parameters in Table 1. However, the

set of parameters is inhomogeneous as it is made of real, integer, and binary variables. In particular t0, ϕ0, and mDSMi

are real, continuous variables and need to be properly discretized. In the present implementation, the values of the
departure date t0 and the departure angle ϕ0 are assumed to be preassigned, therefore the two parameters are removed
from the list of the variables. The rationale behind this choice is that, if an algorithm exists that is able to efficiently
generate a complete plan for a given t0, then an unidimensional search in the time domain can be performed to find
the optimal launch date. The angle ϕ0 on the other hand can very often be estimated depending on the mission:
usually a tangential departure excess velocity is used for nonresonant legs in order to maximize the change in the
semimajor axis. The departure excess velocity will be in the same direction of the planet heliocentric velocity, i.e.,
ϕ0 = 0, if the second planet in the sequence is outwards; vice versa, the launch will be in the opposite direction,
ϕ0 = π , if the second planet is inwards [1].

For resonant legs, instead, very often ϕ0 = ±π/2 as this value allows for the maximization of the radial component
of the relative velocity vector at the following swing-by [18]. Furthermore, it is assumed that the departure planet P0

is given, as is consistent with a great majority of the applications.
Using the additional assumptions on t0, ϕ0, and P0, each solution representing a plan can be encoded using a

vector s of positive integers. The vector has 2nP components. Each pair of consecutive components encodes all the
parameters necessary to characterize one transfer, or segment of the plan (see Fig. 6). The first element of the pair
encodes the identification number of the target planet according to the following procedure: an ordered set QP,i

s =

Fig. 6 Vector for coding a three-leg solution.
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containing all the celestial bodies available as targets for transfer i is predefined, then if k = s2(i−1)+1, the target
planet is qP,ik ∈ QP,i .

The second element of the pair is the row index of the matrix Gi containing all possible combinations of indexes
identifying the elements of the five sets: Q1,i = {q1,i |q1,i ∈ R}, Q2,i = {q2,i |q2,i ∈ N}, Q3,i = {q3,i |q3,i ∈ N}, Q4,i =
{q4,i |q4,i ∈ {0, 1}}, and Q5,i = {q5,i |q5,i ∈ {0, 1}}. If Q4,i = {0, 1} and Q5,i = {0, 1} then the matrix Gi is

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 2
1 1 1 2 1
1 1 1 2 2
1 1 2 1 1
1 1 2 1 2
1 1 2 2 1
1 1 2 2 2
...

...
...

...
...

|Q1,i | |Q2,i | |Q3,i | 2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

where | · | is the cardinality of a set. Each row of Gi is a vector representing a different type of transfer. In general,
the matrix has |Q1,i | · |Q2,i | · |Q3,i | · |Q4,i | · |Q5,i | rows, which is also the number of possible different transfers for
a given segment of a plan. The parameters for the j th type of transfer (i.e., j th row of Gi) can be obtained from:

mDSMi
= q1,ik1 (32)

nrev1,i = q2,ik2 (33)

nrev2,i = q3,ik3 (34)

fp/a,i = q4,ik4 (35)

f1/2,i = q5,ik5 (36)

where k1 = Gi,j1, k2 = Gi,j2, k3 = Gi,j3, k4 = Gi,j4, and k5 = Gi,j5.

B. Tabu and Feasible Lists
The transfer from planet Pi to planet Pi+1 can be feasible or infeasible, for the same set of parameters, depending

on all the preceding transfers from 1 to (i − 1). For this reason, when a plan contains an infeasible transfer, it is
necessary to store the whole path that led to that infeasible transfer. Thus, all the parameters characterizing the partial
solution up to Pi are stored in a tabu list.

In particular, if the problem involves nP transfers, the same number of tabu lists are used. The tabu list of transfer i

contains all the partial solutions, which are feasible up to Pi . The tabu list is stored in a matrix (one for each transfer),
which has an arbitrary number of rows and 2i columns.

The number of elements in the tabu lists can be limited, to limit the memory requirements and the search time.
Once one of the tabu lists is full, the optimizer can either stop or simply start replacing the older elements.

Dual to the list of tabu partial solutions, the feasible list stores all the solutions, which are completely feasible,
i.e., reach the destination planet. This is, once more, a matrix with an arbitrary number of rows and 2nP columns.
Since each solution contained in the feasible list is complete, then it is possible to associate an objective value to
each one of them because the value of the launch excess velocity v0, all the DSMs, the arrival relative velocity v∞,
and the time of flight T are available. A scalar value can be computed from these quantities identifying the value
of the trajectories. In the following test cases, for example, we will use, as objective value, v∞ and a combination
of v∞ and T . Note that, since, in general, there is more than one trajectory for a given solution, the objective value
of a solution is given by the best trajectory value. As for the tabu list, the feasible list length can also be limited for
memory saving. In this case, when the list is full, the optimization can either stop or simply the feasible solutions
with the worst objective value can be replaced.
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C. Plan Generation
The search space is organized as an acyclic oriented tree. Each branch of the tree represents a transfer, whereas

each node (or leaf) represents a different destination planet and type of transfer. A population of m virtual ants are
dispatched to explore the tree, searching for an optimal solution. The search runs for a given number of iterations
niter,max, or until a maximum number of objective function evaluations neval,max has been reached. An evaluation is
a call to the trajectory model, in order to compute the objective value associated to a given solution. Algorithm 2
illustrates the main iteration loop. Each iteration consists of two steps: first, a solution generation step (lines 2–8), and
then a solution evaluation step (line 9). In the former step, the ants incrementally compose a set of solution vectors,
while the latter invokes the trajectory model to assess the feasibility and the objective value of each generated solution.
When the main loop of the search stops, the feasible list contains all the solutions, which were found feasible, with
their corresponding objective value. The solutions are then sorted according to their objective value.

Algorithm 2 Main ACO–MGA search engine
1: Set number of ants equal to m

2: for all k = 1, . . . , m do
3: Generate planetary sequence
4: Generate types of transfers
5: if s is not discarded then
6: S ← S ∪ {s}
7: end if
8: end for
9: Evaluate all solutions in S

10: Update feasible list and tabu list
11: Termination Unless niter > niter,max ∨ neval > neval,max, goto Step 1

At each iteration, each one of the m ants explores the tree independently of the others, but taking into account the
information collected in the feasible and tabu lists by all the ants at the previous iterations. As an ant moves along
a branch, it progressively composes a complete solution by first assigns a value to the odd entries of the solution
vector, i.e., composes the sequence of planetary encounters, and then to the even entries of the solution vector, i.e.,
the parameters defining the types of transfers.

1. Planetary Sequence Generation
As the departure planet is given, an ant has to choose the destination planet for each transfer. The choice is made

probabilistically by picking from the list QP,i . The selection depends on the pheromone distribution vector τP,i (one
for every transfer), which contains the pheromone level associated to each body in the list QP,i . Note that we use
the same notion of pheromone as in standard ACO [8], however there are some differences. Here, the pheromone
level of each possible choice at each leg depends on the previous legs, and therefore it is computed at every step.
Furthermore, due to the different pheromone update rule, here the amount of pheromone is not upper limited to 1.

Every time an ant is at transfer i, the pheromone distribution vector is reset to τP,i = [1, 1, . . . , 1]T. As it will be
explained, this is equivalent to state that all the planets have equal probability to be chosen. The ant sweeps the entire
list QP,i substituting the identification number of each element in QP,i into the ith odd component of the solution
vector s. Then, the feasible list is searched for all the solutions that have a (partial) planetary sequence which matches
the one in s. Say that the j th element of QP,i is added to s, and the resulting partial sequence matches the partial
sequence of the lth solution in the feasible lists, then the pheromone level τP,ij associated to the j th element of QP,i

is increased as follows

τP,ij ← τP,ij + 1

fobj,l
wplanet (37)

The amount of pheromone which is added depends on the objective value fobj,l of the matching solution in the
feasible list, and on the weight wplanet. Once the pheromone update has been done for all the possible choices, the
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probability of selecting one of them is given by

PrP,ij = τP,ij∑
j τP,ij

(38)

and a random selection is performed according to this probability distribution. Thus, the probability of choosing the
j th planet increases according to how many times it generates a promising sequence (leading to a feasible solution),
to the value of the feasible solution itself, and to the parameter wplanet.

This mechanism (summarized in Algorithm 3) is analogous to the pheromone deposition of standard ACO and
aims at driving the search of the ants toward good planetary sequences. In fact, those planets which generate (partial)
sequences that appear either frequently in the feasible list, or rarely but with a low objective function, are selected
with a higher probability. On the other hand, the probability of selecting other planets remains positive, such that one
or more ants can probabilistically choose a planet that generates an undiscovered sequence. Note that, if the feasible
list is empty, then all the planets have the same probability to be selected.

Algorithm 3 Planetary sequence generator
1: for all i = 1, . . . , nP do
2: set τ ← [1, 1, . . . , 1]T

3: for all target body j available at transfer i do
4: s(1+2(i−1)) ← j

5: for all solutions l, in the feasible list, that match s do
6: τP,ij ← τP,ij + 1

fobj,l
wplanet

7: end for
8: end for
9: s(1+2(i−1)) ← SelectProbabilityDistribution(τP,i)

10: end for

The parameter wplanet controls the learning rate of the ants. A low value of wplanet will make the term wplanet/fobj,l

small, and thus the probability distribution will not change much, even if the solution appears repeatedly in the
feasible list, or with low values of fobj. Thus, a relatively low value of wplanet will favor a global exploration of the
search space, whereas a high value of wplanet will greatly increase the probability of choosing a planet which led to
a feasible sequence.

Algorithm 4 assigns a value to the index j , given the pheromone distribution vector τP,i [8]. The procedure iterates
for all the transfers. At the end, all the odd entries of the solution s contain a target planet and the planetary sequence
is complete. The next step is to find the type of transfers for each segment of the plan, thus filling the even entries of
s and complete the solution.

Algorithm 4 Function j ← SelectProbabilityDistribution(τ)

1: r ← U(0, 1)
∑

j τj

2: j ← 1
3: p ← d1

4: while p < r do
5: j ← j + 1
6: p ← p + dj

7: end while

2. Type of Transfer Generation
Once an ant has filled in the odd components of a solution s, it proceeds by assigning values to the even components.

Similarly to the planet sequence generation, for each transfer all the available types of transfer are assigned, one
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at a time, to the solution s. A vector s for which a value is assigned to both the odd and even components up to
leg i represents a partial solution. For each new partial solution, the tabu list is first checked. If the partial solution
appears in the tabu list, then it means that this solution will be infeasible regardless of the way it is completed. The
pheromone of the type of transfer associated to that sequence is set to zero to avoid future selection of that type of
transfer. If the partial solutions does not appear in the tabu list, the feasible list is searched for any matching partial
solution. For every match found, the pheromone distribution for that type of transfer is modified as follows:

τt,ij ← τt,ij + 1

fobj,l
wtype (39)

where the vector τ t,i contains the pheromone distribution associated to the rows of the matrix Gi , and the weight
wtype is introduced with analogous meaning to wplanet. In fact, the higher the coefficient, the higher the chances
that solutions similar to the feasible ones are generated. Conversely, a low value of wtype will favor the selection
of sequences with a different type of transfer, thus increasing the random exploration of the whole solution space.
If, at a given i, all possible transfer types correspond to partial solutions in the tabu list, the vector of pheromone
distribution τ t,i will be full of zeros. As a consequence, the solution s (which can be partial or complete) is discarded,
and the ant can stop its exploration of that branch of the tree.

At the end of the solution generation step, the solution s is either discarded or completed. Once all the ants complete
their exploration, the result is a number of solutions (less than or equal to the number of ants m) to be evaluated. The
procedure is summarized in Algorithm 5.

Algorithm 5 Transfer type generator
1: for all i = 1, . . . , nP do
2: set τ t,i ← [1, 1, . . . , 1]T

3: for all target body j available at transfer i do
4: s(2+2(i−1)) ← j

5: if s is in tabu list of transfer i then
6: τt,ij ← 0
7: else
8: for all solutions l, in the feasible, that match s do
9: τt,ij ← τt,ij + 1

fobj,l
wtype

10: end for
11: end if
12: end for
13: if

∑
j τt,ij = 0 then

14: Discard solution, Terminate
15: else
16: s(2+2(i−1)) ← SelectProbabilityDistribution(τ t,i)
17: end if
18: end for

3. Solution Evaluation
Once a set of plans S has been composed by the ants, each plan has to be evaluated to assess its feasibility and

objective value. This is done by calling the trajectory model. If a solution is infeasible at transfer number i, its
objective value is set to fobj = +∞ and the solution is stored in the ith tabu list. If a solution is feasible, instead, it
is stored in the feasible list.

D. Comparison with Standard ACO
The way in which the ants generate the solutions in ACO–MGA (or tours, to use ACO nomenclature) is similar to

what happens in the TSP with standard ACO [8]: each ant, independently of the others, generates a tour by adding
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nodes (or cities) one at a time. Each node is chosen probabilistically among a set of available nodes: for the TSP, the
available nodes are the cities which have not been visited in the current tour; for the MGA, nodes are all the possible
pairs of bodies and types of transfers. For both frameworks, the pheromone is distributed over all the possible choices,
and then a selection is made, according to the pheromone distribution. In the case of standard ACO, the probability
associated to each city depends on a heuristic function and on the pheromone deposited along the edge connecting
the current city to the next one. ACO–MGA, instead, progressively builds a surrogate model of the feasible and
infeasible regions of the search space by saving the feasible and infeasible solutions in the feasible and tabu lists.
The decision on which city (planet) to visit next, therefore, is made by interrogating the feasible and tabu lists rather
than the model.

The model is interrogated only to evaluate the feasibility and cost of a solution not already in either the feasible
or tabu list. In this sense, the evaluation step can be seen as analogous to the pheromone deposition in standard ACO.

On the other hand, in the case of the MGA trajectory model presented in this paper, the pheromone cannot be
assigned to individual transfers: this is due to the fact that each transfer (identified by its pair of integers) has no
intrinsic value within the plan, if disconnected from the previous transfers. In fact, the actual value of a transfer
depends on its initial conditions, which are in turn dependent on all the previous transfers. Therefore, there is a strong
dependency of every decision on all previous ones.

To illustrate the dependency problem, we make reference to Figs. 7 and 8a: the former shows a typical instance
of the TSP. In this problem, the distance between each pair of cities is fixed, and the relative distances of n cities
can be stored in a n × n matrix [8]. This means that an edge will give the same contribution to the overall length of
the tour, regardless of the rest of the tour. For example, Fig. 7 shows two different tours for the given TSP instance:

Fig. 7 A five-node instance of the TSP, with two possible solutions identified by continuous and dashed arrows.

Fig. 8 Two different representations of the MGA problem: a) TSP-like representation of a three-leg MGA problem
with two solutions, identified by continuous and dashed arrows; b) expanded tree representation of the same MGA
problem.
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1–4–3–2–5 (continuous line) and 1–2–4–3–5 (dashed line). The edge 3-4 is shared by both tours and will obviously
contribute in the same way to their objective functions, i.e., the total distance covered by the tour. This is not true in
the MGA case. Figure 8a is a representation of a simple instance of the MGA problem: it has three transfers, two
sets of parameters for each transfer, two planets for the swing-by’s, and one target planet. Each node represents a
possible planet in combination with a type of transfer. The pairs of numbers next to each node in Fig. 8a are the
two integers identifying the transfer in the solution vector (see Sec. III.A). A solution is generated by selecting one
node for each transfer, thus generating a tour which connects the starting node to one of the final nodes. The figure
represents two possible solutions to the MGA problem: [1, 1, 2, 1, 1, 1] (continuous line) and [2, 2, 2, 1, 1, 1] (dashed
line). These two solutions share the same parameters for the last transfer: [1, 1]. This means that they reach the same
target planet with the same type of transfer. Because of the dependency of each transfer on the initial conditions, it
is not possible to state that the last transfer has the same value for both solutions: in fact, the two trajectories can
be consistently different, and lead to different final conditions and objective functions. For this reason, it makes no
sense, for example, to assign a value to the set of parameters [1, 1] of Transfer 3 in Fig. 8a; whereas it is possible to
assign a value to the edge 3-4 in Fig. 7.

A different representation of the continuous-line solution in Fig. 8a is the one shown in Fig. 8b in which every
branch of the tree depends on the previous ones. In Fig. 8b, it is clear that the set of parameters [1, 1] for Transfer 3
belongs to two different solutions.

Note that the dependency problem would affect any method (exact or stochastic) that proceeds incrementally
along the graph, evaluating one leg at the time.

IV. Case Studies
The proposed optimization method was applied to two case studies inspired by the BepiColombo [13] and Cassini

[19] missions. The two test cases were taken from a previous work by the authors [20] and made more challenging
by increasing the number of degrees of freedom. Furthermore, the analysis and comparisons were extended, with
respect to Ceriotti and Vasile [20], with new results on the performance of all the tested algorithms.

For both tests, t0 and ϕ0 are preassigned and correspond to the launch date and direction of known optimal
solutions. The tests, in fact, aim at assessing the ability of ACO–MGA to efficiently generate a complete plan given a
set of initial conditions. ACO–MGA was tested against two implementations of genetic algorithms: the MATLAB�

Genetic Algorithm and Direct Search Toolbox (GATBX) [21], and NSGA-II [22]. Settings for all the optimizers will
be specified for each test case. While NSGA-II can deal with discrete variables, GATBX operates on real variables
only, therefore a wrapper for the objective function was coded to round the continuous solution vector to the closest
integer. Due to the stochastic nature of the heuristics used in the tests, all the algorithms were run 100 times. Two
performance indexes are used to compare ACO–MGA against the other global optimizers: the percentage of times an
algorithm finds feasible solutions, called feasibility rate in the following, and the percentage of times the objective
value fobj of the feasible solutions is fobj < f̃obj + ε, called admissibility rate in the following. The value f̃obj is
the best known objective function for a given problem. According to the theory developed in Vasile et al. [23–25],
100 runs give an error in the determination of the exact rate (admissibility or feasibility) of less than 6% with 92%
confidence. This means that two results that differ by less than 12% cannot be said, with 100% confidence, to be
different. For the sake of completeness, the mean and variance of the best solution over 100 runs were also reported.

It is important to underline the differences and commonalities between the application of ACO–MGA, NSGA-II,
and GTABX to the solution of the test cases presented in this section. All three optimizers are applied to the same
instances of the same problems. They all interrogate exactly the same black-box function (the trajectory model in Sec.
II), operate on exactly the same solution vector (the vector s in Fig. 6), and explore exactly the same search space.
However, while ACO–MGA builds s incrementally, both NSGA-II and GATBX assign a value to all the components
of s simultaneously. Furthermore, ACO–MGA interrogates both the feasible and tabu lists before calling the model,
if necessary, to fill in the components of s, whereas NSGA-II and GATBX only call the model to decide whether to
retain or reject an individual.

Some preliminary tests showed that the best performance of ACO–MGA is achieved if the algorithm is run in
two steps, using different sets of parameters. In particular, in the first step the weights wplanet, wtype are set to 0.
Remembering Eqs. (37) and (39), this choice translates into an initial pure random search. In fact, the solutions in
the feasible list do not alter the pheromone distribution. On the other hand, the pheromone of tabu partial solutions
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is still set to zero to avoid their reexploration. In the second step, weights are set to nonnull values to intensify the
exploration around known feasible solutions. The values of wplanet and wtype are chosen such that:

wplanet, wtype = w · f̂obj (40)

where f̂obj is the expected minimum value for the objective function. In this way, by choosing for example w = 1,
a 1 is added to the pheromone of a given element every time a matching solution with objective f̂obj appears in the
feasible list. The value of the added pheromone is higher if the objective value of the matching feasible solution is
lower than f̂obj.

This two-step procedure can be explained in the following way. The first step allows a random sampling of the
solution space, with the aim of finding a good number of feasible solutions. This is done to prevent the algorithm
stagnating around the first feasible solution found. The second step intensifies the search around the feasible solutions
which were found in the first step. Because of Eqs. (37) and (39), feasible solutions with low objective values are
likely to be investigated further. In addition, the random component in the process does not forbid the exploration of
the rest of the search space.

All the tests were run on an Intel� Core™ 2 Quad Q9650 (3 GHz) machine running Microsoft� Windows� Vista,
without using any multitasking.

A. BepiColombo Case Study
In this mission, the spacecraft departs from Earth on 15 August 2013 (t0 = 4974.5 MJD2000) to reach a scientific

orbit around Mercury with a minimum relative arrival velocity v∞. The magnitude of the DSMs is assumed to be
limited and can only be one of the values in Q1. The relative arrival velocity is instead free and needs to be minimized
to have acceptable transfers. As such it was decided to include only v∞ in the objective function for this problem.
The launch date was set to match the one of the ESA chemical option for BepiColombo [26]. Four transfers (and
thus three swing-by’s) are considered for the planning problem, with the launch angle set to ϕ0 = π . For the first and
second transfer, the following sets of values were used:

QP = {Mercury, Venus, Earth}
Q1 = {0}
Q2 = {∅}
Q3 = {0, 1, 2, 3, 4}
Q4 = {∅}
Q5 = {0, 1}

Since there is no DSM, the sets Q2 and Q4 are empty. In general, there is no easy way to identify whether the first
or the second orbital intersection is the best one, thus Q5 has cardinality 2. For the third leg, the following sets of
values were used:

QP = {Mercury}
Q1 = {−50, 0, 50} m/s

Q2 = {0}
Q3 = {0, 1, 2, 3, 4}
Q4 = {0, 1}
Q5 = {0, 1}

In this case, a DSM can be exploited to reach Mercury with a minimum v∞. The fourth and last leg is a Mercury
resonant swing-by. Here, the DSM is particularly important to change the relative velocity, therefore a wider set of
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magnitudes were adopted:

QP = {Mercury}
Q1 = {−100, −50, 0, 50, 100} m/s

Q2 = {0}
Q3 = {0, 1, 2, 3, 4}
Q4 = {0, 1}
Q5 = {0, 1}

The modulus of the departure excess velocity v0 is constrained to be between 2 and 4 km/s, which implies the
following set of starting guess points for the Brent’s method: [2, 2.5, 3, 3.5, 4] km/s. The following set of starting
points for rp was used instead for both Venus and Mercury: [0.9, 0.92, 0.94, . . . , 5]RP ; and rps = [−rp, +rp].
Note that swing-by’s with radius of pericentre lower than RP are not physically feasible: there are two reasons
which motivated this choice. The first is that due to the fast dynamics of the inner part of the solar system, a higher
number of feasible solutions are found if we consider lower radii of pericenter. The second is that solutions with radii
of pericenter within the extended range can still be reoptimized with a complete model, and the proper constraint
rp > RP . The total time of flight was limited to a maximum of 10 years, with the objective function set to the v∞
at Mercury. Based on experience and similar previous missions, we define admissible solutions as those solutions
whose objective value is below 6 km/s.

With the sets of values presented above, the average time for the evaluation of one plan is 0.64 ms, and there exist
5,400,000 distinct possible plans. Thus, a systematic scan of all the possibilities would require about 3456 s (57.6 h).

ACO–MGA always used 10 ants, and was tuned with the following weights: wplanet, wtype = 0 for the first step,
followed by a second step with wplanet, wtype = 20f̂obj and f̂obj = 3 km/s. However, because of the normalization in
Eq. (40), the weight values appear to have general validity and can be applied to other transfer problems, as will be
shown in the next case study. The algorithm was run for an increasing number of function evaluations (500, 1000,
2000 function evaluations) until the feasibility rate reached 100% and the admissibility rate was over 90%. For 500
function evaluations, the first step was limited to 50 iterations, whereas the second step was limited to 125 iterations,
which is enough to reach the required maximum number of function evaluations. For the tests with higher number
of function evaluations, the number of iterations was increased proportionally, such that neval/niter = constant.

The performance indexes for 500, 1000, and 2000 function evaluations are presented in Fig. 9. It is worth noting
that even for 500 evaluations, the feasibility rate of ACO–MGA is 100% with an admissibility rate of 45%, i.e., all
runs are feasible and one out of two is admissible. For 2000 function evaluations, the admissibility rate increases up
to 95%, therefore neval = 2000 evaluations will be used as reference value for this problem.

Figure 10 shows the minimum, mean, standard deviation, and maximum of the best solution over 100 runs of
ACO-MGA using 2000 function evaluations, as a function of the iteration number. Each run stops after about 450
iterations, as at that point it reaches 2000 function evaluations. Figure 10a shows that after about 350 iterations, the
number of admissible runs reaches 95%. Nevertheless, Fig. 10b shows that in the last 50 iterations, the standard
deviation of the feasible runs decreases dramatically, meaning that the last few iterations are used to converge locally
but the basin of attraction of the admissible solutions is identified earlier on for a lower number of iterations. Note
also the change in the slope of the admissibility rate and the mean of the best solution after about 200 iterations: this
is the point in which ACO–MGA switches from the first step to the second step, changing the weights in Eq. (40),
and favoring a local search.

Since GATBX and NSGA-II are all-purpose optimizers that work with any black-box problem, a tuning of the
main parameters of these optimizers was performed before comparing them to ACO–MGA. This is done to ensure
that they achieve the best performances on this specific problem. The tuning was performed by running the optimizers
with different settings. For each setting, the optimizer was run 100 times and feasibility rate, admissibility rate, mean,
and variance of the best solution were computed. For each run, the optimization was stopped after 2000 function
evaluations.
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Fig. 9 Performance indexes of ACO–MGA on the BepiColombo problem, over 100 runs, for different number of
function evaluations. a) Number of runs returning an admissible (<6 km/s) or feasible solution. b) Minimum, mean,
standard deviation, and maximum of the best solution over the runs that returned a feasible solution.
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Fig. 10 Performance indexes ofACO-MGA over 100 runs for 2000 function evaluations. a) Number of runs returning
an admissible (<6 km/s) or feasible solution. b) Minimum, mean, standard deviation, and maximum of the best
solution over the runs that returned a feasible solution.

The size of the population npop was tuned for both NSGA-II and GATBX. In addition, we tuned the parame-
ters pcross_bin ∈ (0, 1) and pmut_bin ∈ (0, 1) (whose default value is 0.5 for both) for NSGA-II and parameters
CrossoverFraction ∈ (0, 1) and MigrationFraction ∈ (0, 1) (whose default values are 0.8 and 0.2, respectively) for
GATBX. These parameters are the ones that resulted to have the most influence on the final outcome of an optimization.

It was assumed that each parameter could only take values from a predefined set. The total number of settings
is given by the Cartesian product of all the sets of all the parameters. Hence, each setting corresponds to a possible
combination of values for each parameter. For NSGA-II, the sets were:

npop ∈ {12, 20, 40, 80}
pcross_bin ∈ {0.25, 0.5, 0.75}

pmut_bin ∈ {0.25, 0.5, 0.75}

These sets of parameters generate 36 different settings: for example, the first setting is obtained by taking the first
parameter in each set; the second setting is obtained by taking npop = 12, pcross_bin = 0.25, and pmut_bin = 0.5;
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Fig. 11 NSGA-II tuning on the BepiColombo problem. Results over 100 runs for each setting. a) Number of runs
returning an admissible (<6 km/s) or feasible solution. b) Minimum, mean, standard deviation, and maximum of
the best solution over the runs that returned a feasible solution.

and so on. Analogously, for GATBX, the sets are:

npop ∈ {12, 20, 40, 80}
CrossoverFraction ∈ {0.2, 0.5, 0.8}
MigrationFraction ∈ {0.2, 0.5, 0.8}

The number of generations ngen was set such that npop · ngen = neval. Figure 11 shows the performances of each
setting over 100 runs. Figure 11a shows the number of runs that produced feasible and admissible solutions, whereas
Fig. 11b shows minimum, mean, standard deviation, and maximum of the best solution over the feasible runs.

The combinations that produced the best results are 1, 4, and 7. Table 2 shows the parameters for these combinations
and the corresponding performance indexes. Combination 1 led to the lowest mean and the highest number of
admissible solutions, therefore it was considered to be optimal for this problem.

The results of the tuning of GATBX are reported in Fig. 12. In this case, the combinations that returned the
highest number of admissible solutions are 31, 32, and 36 (see Table 3). Combination 31 has a lower mean, but a
lower value of admissible solutions with respect to Combination 32, whereas Combination 36 has a lower number
of admissible solutions with respect to the other two. The number of admissible solutions is assumed here to be
the most significant performance index (see Vasile et al. [23–25] for a technical justification of this choice), for the
selection of the most appropriate setting. Therefore, Combination 32 was considered to be optimal for GATBX. Note
that the best combination for GATBX has a large population, whereas NSGA-II resulted to work better with a small
population (and more iterations).

Table 2 Three combinations of settings which provided the highest
percentage of admissible solutions for NSGA-II

Combination no. 1 4 7

npop 12 12 12
pcross−bin 0.25 0.5 0.75
pmut−bin 0.25 0.25 0.25
neval/npop 166.67 166.67 166.67
% admissible (<6 km/s) 41 36 34
% feasible 100 100 100
Mean (km/s) 6.9629 7.1451 7.4541
Standard deviation (km/s) 1.7349 1.8367 1.9501
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Table 3 The three settings which provided the highest percentage of
admissible solutions for GATBX

Combination no. 32 31 36

npop 80 80 80
CrossoverFraction 0.5 0.5 0.8
MutationFraction 0.5 0.2 0.8
neval/npop 25 25 25
% admissible (<6 km/s) 19 18 16
% feasible 82 82 90
Mean (km/s) 9.1658 9.1371 9.6991
Standard deviation (km/s) 3.0166 2.7518 3.2726

Figures 13 and 14 show the performance indexes over 100 runs of NSGA-II and GATBX, respectively, for an
increasing number of function evaluations. Since the performance indexes of both optimizers were relatively poor
compared toACO–MGA using 2000 evaluations, the tests were repeated extending the number of function evaluations
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Fig. 12 GATBX tuning on the BepiColombo problem. Results over 100 runs for each combination of the parameters
of the optimizer. a) Number of runs returning an admissible (<6 km/s) or feasible solution. b) Minimum, mean,
standard deviation, and maximum of the best solution over the runs that returned a feasible solution.
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Fig. 13 Performance of NSGA-II on the BepiColombo problem, over 100 runs, for different number of function
evaluations. a) Number of runs returning an admissible (<6 km/s) or feasible solution. b) Minimum, mean, standard
deviation, and maximum of the best solution over the runs that returned a feasible solution.
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Fig. 14 Performance of GATBX on the BepiColombo problem, over 100 runs, for different number of function
evaluations. a) Number of runs returning an admissible (<6 km/s) or feasible solution. b) Minimum, mean, standard
deviation, and maximum of the best solution over the runs that returned a feasible solution.

up to 8000. Nonetheless, neither optimizer could reach the performance of ACO–MGA, even with 8000 function
evaluations.

Figure 15 shows a plot of the best solution found by ACO–MGA for this problem. The sequence for this solu-
tion is EVVMe. The solution has an objective value (relative velocity at Mercury) of fobj = v∞ = 4.8275 km/s
with a time of flight of 4.8275 years, and a departure velocity v0 = 3.6293 km/s. The parameters for this solution
can be found in Table 4. As a comparison, the solution chosen as chemical baseline at ESA/ESOC [27] departs
with an excess velocity of 3.794 km/s, and the velocity relative to Mercury at the second swing-by is 5.472 km/s.
The trajectory exploits only one DSM of 45 m/s. This trajectory, however, is computed using a three-dimensional
model.

The solutions presented so far were found by fixing the departure time t0. In order to find the optimal launch date,
ACO-MGA can be reiterated for different t0. An example is shown in Fig. 16a, where the feasibility and admissibility
rates (fobj < 6 km/s) for each launch date are shown. Figure 16b instead represents the average of the best solutions
found over 100 runs, as a function of t0. Note that in the given range of t0, the optimal sequence does not change.

y 
(k

m
)

x  (km)

Fig. 15 Trajectory of the best solution found by ACO–MGA for the BepiColombo problem.
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Table 4 Parameters of the best solution found by ACO–MGA for the
BepiColombo case study

Parameter Leg 1 Leg 2 Leg 3 Leg 4

Planet V V Me Me
mDSM (m/s) 0 0 −50 100
nrev1 0 0 0 0
nrev2 1 4 2 1
fp/a 0 0 1 1
f1/2 0 1 1 1

Figure 16a reveals that for some launch dates, the probability of finding a good solution is quite low. One reason is
that the region of the search space containing the best solution is particularly narrow. This suggests that for those
dates, small variations of the departure time would result in a steep increase of the mission cost.

B. Cassini Case Study
Cassini is the ESA–NASA mission to Saturn. The planetary sequence chosen for this mission, Earth–Venus–

Venus–Earth–Jupiter–Saturn, allowed a substantial reduction of the total required �v to reach Saturn. For testing
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Fig. 16 BepiColombo Launch window: 100 runs for each launch date. a) Number of runs returning an admissible
(<6 km/s) or feasible solution. b) Minimum, mean, standard deviation, and maximum of the best solution over the
runs that returned a feasible solution.
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ACO–MGA, the launch date was set to t0 = −779 MJD2000, corresponding to 13 November 1997, and the following
sets of values were used for the first three transfers:

QP = {Venus, Earth, Mars, Jupiter}
Q1 = {−600, −350, −200, 0, 200, 350, 600} m/s

Q2 = {0}
Q3 = {0}
Q4 = {0, 1}
Q5 = {0, 1}

For the forth transfer, no DSM is allowed:

QP = {Venus, Earth, Mars, Jupiter}
Q1 = {0} km/s

Q2 = {∅}
Q3 = {0}
Q4 = {∅}
Q5 = {0, 1}

And finally, for the last transfer, the Saturn has to be targeted:

QP = {Saturn}
Q1 = {0}
Q2 = {∅}
Q3 = {0}
Q4 = {∅}
Q5 = {0, 1}

The maximum number of full revolutions was set to 0 to limit the total time of flight of the mission. Since the
trajectory is going outwards from the orbit of the Earth, every full revolution implies more than one additional year
in transfer time. The total number of distinct solutions for this test is 22,478,848 and the average time to evaluate a
solution is 0.39 ms. This translates into 8765 s (or about 146 h) to systematically evaluate all the solutions.

As for BepiColombo, the launch excess velocity module was bounded between 2 and 4 km/s. For the swing-by’s
of Earth and Venus, the radii of pericenter are [1.1, 1.2, 1.3, . . . , 5]RP while a different choice was adopted for
Jupiter. Since, the mass of this planet is considerably higher than the masses of Venus or Earth, higher radii of
pericenter are sufficient to achieve considerable deviations. Furthermore, since the function �θ(rps) is smooth in
this case, the first guesses are spaced with a five Jupiter radii step size: [5, 10, 15, . . . , 100]RP .

Regarding the choice of the objective function, it has to be noted that for all the missions to outer planets, the time
of flight becomes very important, as very long missions are needed to reach farther destinations. Even limiting the
number of complete revolutions to zero is not enough to guarantee a mission with reasonable duration. Therefore, it
is important to include the total time of flight T in the objective function, in addition to the total �v. Since the current
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Fig. 17 Performance of ACO-MGA on the Cassini problem, over 100 runs, for different number of function eval-
uations. a) Number of runs returning an admissible (<16 km/s) or feasible solution. b) Minimum, mean, standard
deviation. and maximum of the best solution over the runs that returned a feasible solution.

algorithm cannot deal with multiobjective optimization, the total time of flight and the v∞ were weighed inside the
objective function in the following way:

fobj = v∞ + σT (41)

with the weight σ = 1/1000 km/s/d.
The total time of flight was limited to a maximum of 100 years. This bound may seem to be too high since a

realistic time span of a transfer to Saturn is around 10 years, however the model considers all the solutions longer
than the specified time of flight threshold infeasible, and the optimizer saves them as tabu. Therefore, limiting the
time of flight to lower values would over-constrain the search for optimal solutions. Better results are obtained by
allowing long solutions to be returned as feasible, and introducing their duration into the objective function. The
admissibility threshold was set to 16 km/s.

For this case study, a procedure similar to the one presented in the previous section was followed. ACO–MGA
used the same weights as for BepiColombo, but since the search space is larger, the algorithm was run for 1000, 2000,
4000, and 6000 function evaluations at which point more than 95% of the runs returned admissible solutions. At
6000 function evaluations, the number of iterations for the first and second step was set to 1000. For other numbers of
function evaluations, the number of iterations was modified proportionally. The performance indexes are presented
in Fig. 17. Note that ACO–MGA is able to identify, already for 1000 function evaluations, a solution that has an
objective value of 6.9 km/s, despite the mean value of the best solutions is about 15 km/s. This solution is particularly
difficult to find in the search space, and more than 6000 evaluations would be necessary to ensure that ACO–MGA
hits the threshold value with over 95% probability.

The behavior of ACO–MGA at 6000 function evaluations is shown in Fig. 18. Figure 10a shows that after about
1600 iterations, the number of admissible runs reaches 95%. Figure 10b shows that in the last 400 iterations, the
standard deviation of the feasible runs decreases dramatically, meaning that the last few iterations are used to converge
locally but the basin of attraction of the admissible solutions is identified earlier on for a lower number of iterations.
Note also the change in slope of the admissibility rate and the mean of the best solution after about 1000 iterations:
this is the point in which ACO–MGA switches from the first step to the second step, changing the weights in Eq.
(40), and favoring local search.

NSGA-II and GATBX were fine-tuned again on this problem following the same procedure presented in Sec. IV.A.
In this case, the reference number of function evaluations for the tuning is 6000. The set of parameters for the two
optimizers are the same as in Sec. IV.A, except for the range of the population size, which was increased as the
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Fig. 18 Performance indexes over 100 runs, for to 6000 function evaluations. a) Number of runs returning an
admissible (<16 km/s) or feasible solution. b) Minimum, mean, standard deviation, and maximum of the best
solution over the runs that returned a feasible solution.

problem is more difficult. For NSGA-II

npop ∈ {20, 60, 100, 200}
pcross_bin ∈ {0.25, 0.5, 0.75}

pmut_bin ∈ {0.25, 0.5, 0.75}

For GATBX:

npop ∈ {20, 60, 100, 200}
CrossoverFraction ∈ {0.2, 0.5, 0.8}
MigrationFraction ∈ {0.2, 0.5, 0.8}

Figure 19 shows the performances indexes of each setting.
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Fig. 19 NSGA-II tuning on the Cassini problem. Results of 100 runs for each combination of the parameters of the
optimizer. a) Number of runs returning an admissible (<16 km/s) or feasible solution. b) Minimum, mean, standard
deviation, and maximum of the best solution over the runs that returned a feasible solution.
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Fig. 20 GATBX tuning on the Cassini problem. Results of 100 runs for each combination of the parameters of the
optimizer. a) Number of runs returning an admissible (<16 km/s) or feasible solution. b) Minimum, mean, standard
deviation, and maximum of the best solution over the runs that returned a feasible solution.

The combinations with the best performance indexes are 1, 4, and 7. Table 5 shows the parameters for these
combinations and the corresponding statistical figures over 100 runs. In this case, Combinations 1 and 4 led to the
same admissibility, but 1 has a higher feasibility rate, therefore this combination was chosen as the best tuning
of NSGA-II.

The results of the tuning of GATBX are reported in Fig. 20. In this case, the combinations that yielded the best
performance indexes are 32, 34, and 36 (see Table 6). Combination 34 has the highest admissibility and feasibility,
and hence it was selected as the optimal tuning for GATBX.

Table 5 The four settings which provided the highest percentage of admissible solutions for
NSGA-II

Combination no. 1 4 7 22

npop 20 20 20 100
pcross−bin 0.25 0.5 0.75 0.5
pmut−bin 0.25 0.25 0.25 0.25
neval/npop 300 300 300 60
% admissible (<16 km/s) 8 8 6 6
% feasible 46 41 47 43
Mean (km/s) 17.8707 18.8932 18.4111 19.3408
Standard deviation (km/s) 2.6524 4.0020 3.0397 4.0692

Table 6 The three combinations of settings which provided the highest
percentage of admissible solutions for GATBX

Combination no. 34 36 32

npop 200 200 200
CrossoverFraction 0.8 0.8 0.5
MutationFraction 0.2 0.8 0.5
neval/npop 30 30 30
% admissible (<16 km/s) 5 3 3
% feasible 17 16 15
Mean (km/s) 17.0286 17.2979 17.2576
Standard deviation (km/s) 1.4476 1.7689 1.5494
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Fig. 21 Performance of NSGA-II on the Cassini problem, over 100 runs, for different number of function evalu-
ations. a) Number of runs returning an admissible (<16 km/s) or feasible solution. b) Minimum, mean, standard
deviation, and maximum of the best solution over the runs that returned a feasible solution.
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Fig. 22 Performance of GATBX on the Cassini problem, over 100 runs, for different number of function evaluations.
a) Number of runs returning an admissible (<16 km/s) or feasible solution. b) Minimum, mean, standard deviation,
and maximum of the best solution over the runs that returned a feasible solution.

Figures 21 and 22 show the results of 100 runs of NSGA-II and GATBX, respectively, for an increasing number of
function evaluations. Since the performance of both the optimizers was relatively poor at 6000 evaluations, the tests
were extended up to 18,000 evaluations. Even for this test case, ACO–MGA outperforms the other general-purpose
optimizers, using far less function evaluations. Note that NSGA-II and GATBX are able to find the best-known
solution only for 12,000 function evaluations or more.

The parameters associated to the best found solution are shown in Table 7, and the trajectory is shown in Fig. 23a.
As a comparison, in Table 8 and Fig. 23b, we report the the best solution known so far with a complete 3D model.‡

Table 8 and Fig. 23b demonstrate that although the model in Sec. II is only a bi-dimensional, low-fidelity approx-
imation of an MGA trajectory, it is accurate enough to correctly identify optimal MGA transfers and to provide a
good estimation of their cost.

The sequence EVVEJS is not the only one that ACO–MGA found for this problem. All other feasible sequences
that were found during the optimization process are reported in Fig. 24 together with their objective value. Note that
Mars appears only in one sequence.

‡ http://www.esa.int/gsp/ACT/inf/op/globopt/edvdvdedjds.htm, last accessed 10 June 2010

290



CERIOTTI AND VASILE

Table 7 Parameters of the best solution found by ACO–MGA for the Cassini case study

Leg 1 Leg 2 Leg 3 Leg 4 Leg 5

Planet V V E J S
mDSM (m/s) 600 −350 0 0 0
nrev1 0 0 0 0 0
nrev2 0 0 0 0 0
fp/a 0 1 0 0 0
f1/2 0 1 0 0 1

Table 8 Comparison between the best solution found by
ACO–MGA and the best-known solution for this trajectory

Variable ACO–MGA Best known

v0 (km/s) 3.139 3.266
�v1 (m/s) 600 473
�v2 (m/s) 350 398
�v3 (m/s) 0 0
�v4 (m/s) 0 0
�v5 (m/s) 0 0
v∞ (km/s) 4.216 4.247
T1 (d) 168.18 167.36
T2 (d) 423.68 424.09
T3 (d) 53.00 53.31
T4 (d) 596.37 589.74
T5 (d) 2290.27 2199.97
α1 0.83 0.77
α2 0.52 0.53
α3 0.16 0.35
α4 0.02 0.10
α5 0.13 0.48
rp,1 1.61 1.36
rp,2 1.25 1.05
rp,3 1.32 1.31
rp,4 68.3 71.38
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Fig. 23 Solution to the Cassini problem: a) 2D solution from ACO–MGA, b) Cassini best-known solution.
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Fig. 24 Classification of the transfer sequences for the Cassini test case.

V. Conclusions
The paper introduced a novel formulation of the automatic trajectory planning problem and proposed an algorithm

(ACO–MGA), based on the ant colony paradigm, to generate optimal plans. Each plan is then translated into a
complete optimal trajectory made of a scheduled sequence of events. A specific model was developed to efficiently
generate families of scheduled trajectories for MGA transfers.

The 2D trajectory model proved to be accurate enough to closely reproduce known MGA transfers even with
moderate inclinations. Furthermore, the scheduling of the trajectories was shown to be fast and reliable, allowing for
the evaluations of thousands of plans in a few seconds.

The planning algorithm, ACO–MGA, operates an effective search in the finite space of possible plans. The
algorithm demonstrated the remarkable ability to find good solutions with a very high success rate, outperforming
known implementations of genetic algorithms.

As ACO–MGA requires very little information on the MGA problem under investigation, it represents a valuable
tool for the complete automatic design of future space missions. Furthermore, the proposed use of tabu lists appears
to be an effective solution to those planning problems in which the value of one segment of the plan depends on all
the preceding segments.

Future work aims at a more efficient handling of the lists, which is currently the major bottleneck of theACO–MGA
implementation.
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